Interspeech 2020 Lite Audio-Visual Speech Enhancement

Shang-Yi Chuang¹, Yu Tsao¹, Chen-Chou Lo², Hsin-Min Wang³

¹Research Center for Information Technology Innovation, Academia Sinica ²EAVISE, Dept. of Electrical Engineering, KU Leuven, Belgium ³Institute of Information Science, Academia Sinica

Outline

- Introduction
- Related Works
- Proposed Lite Audio-Visual Speech Enhancement (LAVSE) System
- Experiments
- Conclusion

LAVSE on GitHub

Introduction

Speech Enhancement (SE)

- Improve speech quality and intelligibility
- Front-end processing of speech-related applications
 - Automatic speech recognition
 - Assistive hearing technologies
 - Speaker recognition
- Deep-learning models in SE
 - Outstanding nonlinear mapping properties
 - Easy to fuse multimodal data

Introduction

Audio-Visual SE (AVSE)

- Visual information has been adopted as auxiliary information to facilitate better SE performance
- Two AVSE problems
 - Additional processing costs for visual input
 - Privacy problems of face or lip images

Introduction

Proposed Lite AVSE (LAVSE)

- Two visual data compression techniques
 - Autoencoder (AE)-based compression network
 - Reduces the size of the visual input
 - Extracts highly informative visual information
 - A quantization data compression scheme
 - Reduces the bits of the extracted representation
- LAVSE yields better performance than an audio-only SE baseline
- The user identity can be removed from the compressed visual data

Related Works

Multimodal Deep Convolutional Neural Networks (AVDCNN) [1]

- AVDCNN is adopted as the basic AVSE system in this study
- Receives noisy audio and lip images as the input
- Generates enhanced audio and lip images as the output

Related Works

Bit-wise Data Compression

- Single-precision floating-point format
 - 1 sign bit
 - The value is positive or negative
 - 8 exponential bits
 - Representation range of the value
 - 23 mantissa bits
 - Significant figures
- Exponent-only floating-point (EOFP) format [2]
 - No mantissa bit
 - Does not change the represented value itself
 - Only reduces the precision

The Proposed LAVSE

- LAVSE architecture
 - Data preprocessing
 - SE model
 - Data reconstruction
- Two visual data compression techniques
 - Encoderae
 - Qualatent (EOFP)
- Features
 - Audio: log1p magnitude spectrum
 - Visual: AE+EOFP

Figure 2: The LAVSE architecture with two visual data compression units (EncoderAE and Qualatent).

The Proposed LAVSE

Encoderae

- Dimension
 - Original image: 3×64×64
 - AE feature: $2048 (= 32 \times 8 \times 8)$
- Only 16.67% of the size after AE compression

(a) Original lip images.

(b) AE reconstructed images.

Figure 4: Original and AE reconstructed lip images.

Figure 3: The AE model for visual data compression.

The Proposed LAVSE

Qualatent

- Bits
 - 32-bit floating-point
 - 1 sign bit
 - 8 exponential bits
 - 23 mantissa bits
 - 4-bit EOFP
 - 1 sign bit
 - 3 exponential bits
 - 0 mantissa bit
- Only 12.5% of the size after applying EOFP
- User identity has been removed

(a) AE feature.

(b) AE+EOFP feature.

Figure 6: Visual latent features of lips.

Figure 5: The distributions of visual features before and after applying Qualatent.

Experimental Setup

- The dataset of Taiwan Mandarin speech with video (TMSV)
- Mismatched speakers, noise types, and SNR levels in training and testing sets
 - Training set
 - 4 males, 4 females
 - The 1st to the 200th utterance
 - 100 types of noise [3]
 - SNRs: from -12 dB to 12 dB with a step of 6 dB

- Testing set (car driving scenario)
 - 1 male, 1 female
 - The 201st to the 320th utterance
 - Noise types
 - Cries of a baby
 - Engine noise
 - Background talkers
 - Music
 - Pink noise
 - Street noise
 - SNRs: -1, -4, -7, -10 dB

Experimental Setup

- The lip or face image contours were positioned using Dlib [4]
- Evaluation metrics
 - Perceptual evaluation of speech quality (PESQ) [5]
 - Short-time objective intelligibility measure (STOI) [6]

Experimental Results

- Investigate the effects of visual information
- LAVSE(AE): Proposed LAVSE with Encoderage
- Baselines
 - Audio-only SE system
 - AVSE with different visual features
 - AVSE(VGGface): face features processed by VGGface [7]
 - AVSE(face): raw face images
 - AVSE(lip): raw lip images

	PESQ	SIOI
Noisy	1.001	0.587
Audio-only	1.283	0.610
AVSE(VGGface)	0.797	0.492
AVSE(face)	1.270	0.616
AVSE(lip)	1.337	0.641
LAVSE(AE)	1.374	0.646

Table 1: PESQ and STOI scores of the LAVSE(AE) system and the baselines.

Experimental Results

- Investigate the effects of Encoderage and Qualatent
- Compression ratio

• Encoderae:
$$R_{AE} = \frac{3 \times 64 \times 64}{2048} = 6$$

• Qualatent:
$$R_{\text{Qua}} = \frac{1+8+23}{1+3+0} = 8$$

• Overall:
$$R_{\text{Comp}} = R_{\text{AE}} \times R_{\text{Qua}} = 48$$

- LAVSE(AE+EOFP): LAVSE with Encoderae and Qualatent 0.55
 - PESQ: 1.358, STOI: 0.643
 - PESQ and STOI maintain
 - Robust over different SNRs

Refer to Table 1	PESQ	STOI
Noisy	1.001	0.587
Audio-only	1.283	0.610
AVSE(lip)	1.337	0.641
LAVSE(AE)	1.374	0.646

0.45

n10db

Figure 7: PESQ and STOI scores at specific SNR levels.

(b) STOI.

n4db

n7db

■ Noisy ■ Audio-only ■ AVSE ■ LAVSE(AE)

n1db

LAVSE(AE+EOFP)

Conclusion

- The contributions of this study are threefold
- Verified the effectiveness of incorporating visual information into SE system
- The compressed visual data can still provide significant complementary information for the SE task
- The proposed compression modules can moderately address the privacy problems

Thank you!

References

- [1] J.-C. Hou, S.-S. Wang, Y.-H. Lai, Y. Tsao, H.-W. Chang, and H.-M. Wang, "Audio-visual speech enhancement using multimodal deep convolutional neural networks," IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 2, pp. 117–128, 2018.
- [2] Y.-T. Hsu, Y.-C. Lin, S.-W. Fu, Y. Tsao, and T.-W. Kuo, "A study on speech enhancement using exponent-only floating point quantized neural network (eofp-qnn)," in Proc. SLT 2018.
- [3] G. Hu, "100 nonspeech environmental sounds," 2004, available: http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html.
- [4] D. E. King, "Dlib-ml: A machine learning toolkit," Journal of Machine Learning Research, vol. 10, pp. 1755–1758, 2009.
- [5] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, "Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs," in Proc. ICASSP 2001.
- [6] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, "An algorithm for intelligibility prediction of time-frequency weighted noisy speech," IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2125–2136, 2011.
- [7] O. M. Parkhi, A. Vedaldi, and A. Zisserman, Deep face recognition. British Machine Vision Association, 2015.

