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Introduction

Speech Enhancement (SE)

= Improve speech quality and intelligibility

= Front-end processing of speech-related applications
= Automatic speech recognition

= Speaker recognition
= Speech coding

= Hearing aids

= Cochlear implants

= Deep-learning models in SE
= Better performance than traditional statistical and machine-learning methods

= Flexibility to fuse data from different domains
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Introduction
Lite Audio-Visual SE (LAVSE} |1]

= Ability to handle immense visual data and potential privacy issues
= Autoencoder (AE)-based compression network

= Latent feature quantization unit

= Three practical issues when implementing AVSE systems in real-world scenarios
= The additional cost of processing visual data

= Usually much higher than the cost of processing audio data
= Computing power or memory, and visual sensors

= Audio-visual asynchronization
= Low-quality visual data
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Introduction
Improved Lite Audio-Visual SE {1LAVSE)

= Three-unit data compression module CRQ

= Data augmentation scheme on asynchronization

= Zero-out training scheme
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Related Works

= AVSE: Multimodal Deep Convolutional Neural Networks (AVDCNN) (2]

= Lite Audio-Visual SE (LAVSE) (1}
= Bit-wise Data Compression: Exponent-only floating-point (EOFP) format | 3]
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Related Works

LAVSE [1]

= Used a pre-trained AE to extract meaningful and compact representations of visual data
= To reduce computational costs

= Appropriately solve the privacy problem in facial information

= The AE is pre-trained in an unsupervised learning manner
= Can be trained on a richer unimodal dataset
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Related Works

EOFP [3]

= Single-precision floating-point format

= 1 S1E811 bit Sign (S)  Exponential (Exp) Mantissa (Man)

= The value is positive or negative ojo|1]1|1|1]1]|o]o|1|o|1]|o|o|o|o|o]o|o|ofo|1]|1][0]0|0|00]0|0|0]0
index 0 1 8 9 31
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= 8 exponential bits

= Representation range of the value | | o | |
Figure 2: Single-Precision Floating-Point Format.

= 23 mantissa bits

= Precision valueig = (—1)5x2E*¥P10-blas) Man,,

= Exponent-only floating-point (EOFP) format | 3] Exp, = efe;jg4e5e6e7e8

= No mantissa bit 8

= Does not change the represented value itself Expqo = Z e; x 281
i=1
Man, = mgmqg ... M3

31
Man10 — z miX2(8_i)
1=9

= Only reduces the precision

IEEE/ACM TASLP
Improved Lite Audio-Visual Speech Enhancement




The Proposed iLAVSE

= The iLAVSE system

= LAVSE (Encoderae and Quaiatent)
= CRQ visual data compression
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= Compensation on audio-visual asynchronization

= Zero-out training

= Features

= Audio: loglp magnitude spectrum

= Visual: CRQ+AE+EOFP
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Figure 3: The proposed iLAVSE system.
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The Proposed iLAVSE
CRQ

= A three-unit data compression module for channel reduction, resolution reduction, and
bit quantization

CRQ

Lip Images Grayscale Images Low-resolution Images Quantized Images

Figure 4: The proposed CRQ module.
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The Proposed iLAVSE

CRQ integrated with Encoderac

= The AE trained in frame-wise manner
= Input: CRQ processed lip images

= Output: grayscale low-resolution images
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“ 2D Transposed Convolutional Layer
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IEEE/ACM TASLP Figure 5: The AE model for visual input data compression. @
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= Bits
= 32-bit floating-point

(a) 32-bit AE features. (b) EOFP 3-bit AE features.

Figure 6: Original and quantized visual latent features.
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IEEE/ACM TASLP Figure 7: The distributions of visual features before and after applying Qualatent.
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The Proposed iLAVSE

Compensation of Audio-Visual Asynchronization

= Artificially simulate various asynchronous audio-visual data

Training data Truncated Training data Truncated

‘z‘.i k!s‘&.ia ‘zf.i k

(a) Synchronous. (b) Asynchronous.
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Figure 8: Synchronous and asynchronous audio and visual data.
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The Proposed iLAVSE

Zero-out Training

= The quality of video frames may be poor in poor lighting conditions, such as in a tunnel or
at a night market

= Let iLAVSE dynamically decide whether video data should be used
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(a) Low-quality lip images. (b) Low-quality latent features.

Figure 9: Low-quality visual data.
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Experiments

Experimental Setup

= The dataset of Taiwan Mandarin speech with video (TMSV)

= Mismatched speakers, noise types, and SNR levels in training and testing sets

= Training set = Testing set (car driving scenario)
= 4 males, 4 females = 1 male, 1 female
= The 15t to the 200™ utterance = The 2015t to the 320t utterance
= 100 types of noise |4] = Noise types
= SNRs: from -12 dB to 12 dB with a step of 6 dB = (Cries of a baby

= Engine noise

= Background talkers
= Music

= Pink noise

= Street noise
= SNRs:-1,-4,-7,-10dB
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Experiments

Experimental Setup

= The lip or face image contours were positioned using Dlib |5]

= Evaluation metrics
= Perceptual evaluation of speech quality (PESQ) [6]

= Short-time objective intelligibility measure (STOI) |7]
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Experiments
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= Audio-only baselines
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Experiments

_ Noisy 1.001 0.587
Experimental Results

AOSE 1.282 0.616
= Baselines AOSE(DP) 1.283 0.610
= Audio-only SE systems AVDCNN [? 1337 0.641

= AVSE systems 2] | |
= Compared to AOSE and AOSE(DP), all the LAVSE(AE) [1] LaLal 0-646
AVSE systems yield higher PESQ and STOI LAVSE(AE+EOFP4bit) [1]  1.358 0.643
= The proposed iLAVSE can maintain SE iLAVSE(CRQ) 1387 0639

performance comparable to LAVSE(AE)
iILAVSE(CRQ+AE) 1.398 0.641

iLAVSE(CRQ+AE+EOFP3bit) RSN 0.641

Table I: Average PESQ and STOI scores of the two audio-only SE
systems and the AVSE systems over SNRs of -1, -4, -7 and -10 dB.
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Experiments

Experimental Results

. R G G
= Data Compression of CRQ and Qualatent
- {COlimg, Resimg, Quaimg, Qualatent} — {A, 3, C, D} AOSE(DP) 1.283 0.610
= A: RGB or GRAY (for grayscale) ILAVSE 64 1.374 m®yi:d 0.646 0.646
* B: Image resolution iLAVSE32 1371 1.375 0.644 0.645

= C:image data quantization

= D: latent feature quantization ILAVSE 16 1.374 1.358 0.646 BIKTY,

Table II: The performance of iLAVSE using lip images with
reduced channel numbers and resolutions, R: {RGB} and G:
{GRAY}. The underlined scores are the same as those of LAVSE
in Table I because the iLAVSE with the {RGB, 64} setup is
equivalent to LAVSE.




Experiments

Experimental Results

R

G G

1 1.333 1.296 0.619 0.615
1.250 1.295 0.628 0.613
1.361 BERLEN 0.644 0.641
1.374 1379 0.640 0.644
1.386 1.387 0.642 0.642
32 1374 1.358 0.646 NIXZL

R

Total bits

= Data Compression of CRQ and Qualatent

- {COlimg, Resimg, Quaimg, Qualatent} = {A, B, C, D}
= A: RGB or GRAY (for grayscale)
= B: image resolution
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= D: latent feature quantization

Table III: The performance of iLAVSE with or without image
quantization (the original image is with 32 bits), R: {RGB, 64}
and G: {GRAY, 16}. The underlined scores are the same as those
of LAVSE in Table I.
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Experiments

Experimental Results

= Data Compression of CRQ and Qualatent

. {COlimg, ReSimg, Quaimg, Qualatent} = {A, B, C, D}
= A: RGB or GRAY (for grayscale)
= B: image resolution

(a) {RGB, 16, 5bits(i)} input. (b) {RGB, 16, 5bits(i)} output.

= C:image data quantization
= D: latent feature quantization

= Compression ratio Rcomp of CRQ

« {RGB, 64, 32bits(i)} to {GRAY, 16, 5bits(i)} (c) {GRAY, 16, 5bits(i)} input. (d) {GRAY, 16, 5bits(i)} output.
_ 3 v ﬁ v 32 _ 307.2 Figure 11: AE lip images in 5 bits (1 sign bit and 4 exponential bits).
1 162 '
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Experiments

Experimental Results

Total bits R G R G
= Data Compression of CRQ and Qualatent 1 1365 1.374 0.642 0.642
- {COlimg, Resimg, Quaimg, Qualatent} - {A, B, C, D} 3 1.337 1410 0.642 0.641
* A RGEB or GRAY (for grayscale] 5 1.343 BEWEER 0.643 0.641
= B: image resolution
= C: image data quantization / 1.357 1.391 0.643 0.641
= D: latent feature quantization 9 1362 1373 0643 0643

= Choose {GRAY, 16, 5bits(i), 3bits(1)} 32 1.374 1.398 RINYYR 0.641

= Baselines . . .
Table IV: The performance of iLAVSE with or without latent
= AOSE(DP) (PESQ =1.283 and STOI = 0.610) quantization, R: {RGB, 64, 32bits(i)} and G: {GRAY, 16, 5bits(i)}

= LAVSE (PESQ = 1.374 and STOI = 0.646) (1 sign bit + 4 exponential bits).
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= Further Analysis
= AVDCNN: original high-quality images
= LAVSE: {RGB, 64, 32bits(i), 32bits(1)}
= iILAVSE: {GRAY, 16, 5bits(i), 3bits(l)}

Experiments

Experimental Results
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Figure 12: The performance of different SE systems at different SNR levels.
LAVSE: {RGB, 64, 32bits(i), 32bits(1)}, iLAVSE: {GRAY, 16, 5bits(i), 3bits(l)}.
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= Further Analysis
= AVDCNN: original high-quality images
= LAVSE: {RGB, 64, 32bits(i), 32bits(1)}
= ILAVSE: {GRAY, 16, 5bits(i), 3bits(l)}

Experiments

Experimental Results
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Figure 13: The performance of different SE systems on different human-voiced noises.
LAVSE: {RGB, 64, 32bits(i), 32bits(1)}, iLAVSE: {GRAY, 16, 5bits(i), 3bits(1)}.
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Experiments

Experimental Results

SNRs AOSE(DP) IiLAVSE AOSE(DP) iLAVSE SNRs AOSE(DP) 1LAVSE AOSE(DP) Ii1LAVSE
Poor 1.387 1.544 0.699 0.734 Poor 0.793 1.009 0.435 0.487
Low 1.629 1.757 0.760 0.783 Low 1.183 1.372 0.575 0.621
Mild 1.886 1.966 0.812 0.823 Mild 1.575 1.733 0.702 0.733

(a) Baby cry. (b) Background talkers.

Table V: The performance of AOSE(DP) and iLAVSE on different human-voiced noises at different SNR levels.
Poor: -10db and -7db, Low: -4 and -1db, Mild: 2db and 5db. iLAVSE: {GRAY, 16, 5bits(i), 3bits(1)}.
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(a) Clean waveform.

Experiments

Experimental Results

= Spectrograms and waveforms
« Example of -7 dB street noise (c) Noisy wavetorm.

= iILAVSE can suppress the noise more effectively
than AOSE(DP)

= ILAVSE and LAVSE are very similar

(e) AOSE(DP) waveform.

Figure 14: The waveforms and spectrograms of an example
speech utterance under the condition of street noise at -7 dB.

The vertical axis of the waveform figure represents the
normalized amplitude (-0.1~0.1), and the vertical axis of the
spectrogram figure represents the frequency (0k~8k Hz). The
horizontal axis is time. The example utterance is 3 seconds long.

(g) LAVSE waveform.
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Experiments

Experimental Results

Figure 15: The real-world car-driving scenario. ILAVSE Demod®
« Real-world data 7 6
. L. . . )
= 10 video clips in a real car-driving scenario 2.5 - n*»‘ ,\] VAL Ay
2 U b R
- Background music and car-driving noise 2.4 )
= Speech-to-reverberation modulation energy 2.3
ratio (SRMR) [8] 2.2 S ‘
. . o o w
= No speech in brown box, only music = 2.1 §
)
= The closed lips can help iLAVSE remove the 2
background music better than AOSE(DP) 1.9 5 ..
1.8 = . '
1.7
0 1 2 3 45 6 7
1.6 -
Noisy AOSE(DP) iLAVSE ime (s)
(a) SRMR. (b) Waveforms.

Figure 16: The average SRMR scores and sample processed
IEEE/ACM TASLP waveforms obtained by AOSE(DP) and iLAVSE for the real- world ,‘
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Experiments

Experimental Results

= Asynchronization Compensation
= 5 specific offset ranges (OFR): [-1, 1], [-2, 2], |-3, 3], [-4, 4], and |-5, 5]
= Take iLAVSE(OFR1) for example
« OFR=1[-1,1]
= An offset of -1, 0, or 1 frame (each frame = 20ms) was randomly selected (with equal probability)

= For testing, fixed offsets in [-5, 5] is used, contained 11 different degrees of asynchronization

= Used original visual data
= “Test Offset = -5” and “Test Offset = 5” are the most severe conditions

= Audio and visual signals are misaligned for 5 frames (100 ms) in both cases
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Experiments

Experimental Results
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(a) PESQ.
Figure 17: The PESQ and STOI scores of iLAVSE trained and tested with different audio-visual asynchronous data.
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Experiments

Experimental Results

= Zero-Out Training
= Low-quality percentage (LP): the percentage of missing frames in the visual data

= Low-quality percentage range (LPR): the range of randomly assigned LPs for each batch

= Take iILAVSE(LPR10) for example with a batch of 150 frames

= LP will be randomly selected from 0% to 10%
= If LP is set to 4%, a sequence of 6 (150x4%) frames of the visual data will be replaced with zeros

= For training, LPRs € {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
= For testing, LPs € {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
= The starting point of the missing visual part was randomly assigned for each batch
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Figure 18: The PESQ and STOI scores of iLAVSE trained with different LPRs and tested on specific LP conditions.
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Conclusion

= For practical AVSE systems
= Decreased the cost of visual data by using preprocessing modules (CRQ and AE)

= Solved audio-visual asynchronization by a data augmentation scheme
= Addressed low-quality visual data issues with a zero-out training approach

= The proposed iLAVSE system is robust under adverse conditions and can be
appropriately implemented in real-world applications
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Thank you!
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